Google Firestore (Native Mode)
Firestore is a serverless document-oriented database that scales to meet any demand. Extend your database application to build AI-powered experiences leveraging Firestore's Langchain integrations.
This notebook goes over how to use Firestore to save, load and delete langchain documents with FirestoreLoader
and FirestoreSaver
.
Learn more about the package on GitHub.
Before You Begin
To run this notebook, you will need to do the following:
After confirmed access to database in the runtime environment of this notebook, filling the following values and run the cell before running example scripts.
# @markdown Please specify a source for demo purpose.
SOURCE = "test" # @param {type:"Query"|"CollectionGroup"|"DocumentReference"|"string"}
🦜🔗 Library Installation
The integration lives in its own langchain-google-firestore
package, so we need to install it.
%pip install -upgrade --quiet langchain-google-firestore
Colab only: Uncomment the following cell to restart the kernel or use the button to restart the kernel. For Vertex AI Workbench you can restart the terminal using the button on top.
# # Automatically restart kernel after installs so that your environment can access the new packages
# import IPython
# app = IPython.Application.instance()
# app.kernel.do_shutdown(True)
☁ Set Your Google Cloud Project
Set your Google Cloud project so that you can leverage Google Cloud resources within this notebook.
If you don't know your project ID, try the following:
- Run
gcloud config list
. - Run
gcloud projects list
. - See the support page: Locate the project ID.
# @markdown Please fill in the value below with your Google Cloud project ID and then run the cell.
PROJECT_ID = "my-project-id" # @param {type:"string"}
# Set the project id
!gcloud config set project {PROJECT_ID}
🔐 Authentication
Authenticate to Google Cloud as the IAM user logged into this notebook in order to access your Google Cloud Project.
- If you are using Colab to run this notebook, use the cell below and continue.
- If you are using Vertex AI Workbench, check out the setup instructions here.
from google.colab import auth
auth.authenticate_user()
Basic Usage
Save documents
FirestoreSaver
can store Documents into Firestore. By default it will try to extract the Document reference from the metadata
Save langchain documents with FirestoreSaver.upsert_documents(<documents>)
.
from langchain_core.documents import Document
from langchain_google_firestore import FirestoreSaver
saver = FirestoreSaver()
data = [Document(page_content="Hello, World!")]
saver.upsert_documents(data)
Save documents without reference
If a collection is specified the documents will be stored with an auto generated id.
saver = FirestoreSaver("Collection")
saver.upsert_documents(data)